Oregon Science Teachers Association
Log in

Where TEK and the Nature of Science Meet: Honoring the Knowledge of Indigenous People in the Science Classroom

March 01, 2018 1:14 PM | Anonymous

We received so much interest in this interview that we're making it available as a blog post! 

Ciarra “C” Greene wears many hats: Nez Perce woman, chemist, science educator, ecologist, community leader, consultant and communicator. C grew up on the traditional homelands of the Nez Perce in Lewiston and Lapwai, Idaho. Despite sobering high school graduation and college entrance statistics for Native students (in Oregon, for example, 60% of Native students graduate high school in 5 years, and of those, only half enter college within 16 months, based on recent state data), C moved away to attend college at Northern Arizona University in Flagstaff, earning a Bachelors of Science in Chemistry. While completing her Bachelors, she researched environmental transport and stabilization of uranium taking place within Diné/Navajo communities, and completed internships with the Nez Perce Tribe, Dept. of Energy (Hanford), EPA, and Institute of Tribal Environmental Professionals. She recently completed her Masters in Science Teaching at Portland State University, focusing her graduate thesis on the intersections of Traditional Ecological Knowledge (TEK) and the Nature of Science (NOS) in a middle school science curriculum. Apart from academic endeavors, C has worked as a curriculum developer, camp instructor, and water resources specialist. 

Below, we ask C a few questions about her master's thesis and what Oregon science teachers can take away from her work.

TOST: Many of us might not know what Traditional Ecological Knowledge (TEK) is. How did you decide to focus your Master's thesis on TEK and STEM education?
C: Being raised in the mountains, in the creeks, and along the rivers, from a young age I learned about relationships between plants, animals, land, water, and air; the patterns of when, where, and how things grow; Nez Perce words for things and phenomena, which in themselves hold knowledge about the place, the significance, and purpose- this is my traditional ecological knowledge. TEK is a base of knowledge I did not realize I had acquired throughout my life, let alone that is was knowledge with equivalent value and depth as scientific knowledge- to me it was just part of life. Learning about TEK from an academic perspective, I learned that although TEK has unique foundations (i.e. the inclusion of spirituality and cultural values like respect and reciprocity), some of the organizing principles, habits of mind, skills and procedures, and knowledge of both TEK and Western science have common ground.

TOST: In terms of STEM education, where does TEK “fit in”? 
C: A common approach is supplementing lesson plans and activities with tidbits of examples of how Native Americans used to use the land. Like TEK, Western science is unique (i.e. evidence-based on observation, measurement, and experimentation, with a quantitative written record), yet the TEK - Western Science Common Ground provides an intricate overlap of the knowledge bases. It wasn’t until I learned about the Nature of Science that I realized the possibility of authentically integrating TEK with STEM education. The Nature of Science describes how science knowledge is developed, who contributes to science, and what characteristics those people have. Included in the Next Generation Science Standards, the NOS learning expectations can be directly associated to the TEK - Western science Common Ground (click image to enlarge). This is where I developed my research question: What is the impact of integrating Traditional Ecological Knowledge in science curriculum on middle school students’ understanding of the Nature of Science (NOS)?

My research was conducted with two middle school summer camps that emphasized STEM practices and careers. One camp integrated TEK throughout camp activities and focused on STEM careers related to Native American cultural resources (salmon, roots, berries), while the other camp was more academic focused on pre-algebra, college preparation, and a broad range of STEM careers. Camp participants were from tribal communities of the Nez Perce, Yakama, Umatilla, and Warm Springs. Camp participants completed a pre- and post-survey which was developed to gauge their understanding of NOS. I developed keywords associated to NOS concepts (i.e. Science knowledge is cumulative and many people, from many generations and nations have contributed to science knowledge- keyword: Generations). Throughout camp, participants demonstrated their understanding of NOS through the incorporation of a keyword in the daily portfolio entries describing their experience during the day. As the researcher, I documented how and when NOS and TEK concepts were apparent.

TOST: What are the conclusions from your research that are most applicable to Oregon science teachers?
C: Student surveys (pre/post) and portfolio entries were evaluated for understanding of Nature of Science (NOS) concepts. In survey responses, participants at the camp that integrated Traditional Ecological Knowledge (TEK) improved their understanding in two NGSS NOS categories: Science is a way of knowing, and Scientific knowledge assumes an order and consistency in natural systems. Portfolios are recommended as a culturally responsive assessment method and for NOS assessments. The camp with TEK-integrated curriculum also scored higher for portfolio entries in comparison to the camp that was focused on STEM academics and careers. Higher portfolio scores and improvement in survey scores demonstrated that both camps had an impact on student understanding of NOS...or simply, relating concepts to daily experiences helps us better understand those concepts. Overall, integrating TEK in science curriculum improved middle school students’ understanding of some components of the Nature of Science- particularly those comparable to the TEK- Western science Common Ground concepts.

Through my literature review, I was able to find recommended teaching methods for NOS, which were aligned with methods of how TEK is taught. For example, “teaching the NOS in alignment with philosophy, psychology, sociology, and anthropology” is exhibited when TEK is taught. This further supports the compatibility of integrating TEK into science curriculum to improve NOS understanding. Furthermore, Oregon school districts will soon be required by the state of Oregon to teach curriculum that is culturally responsive for Native students (SB13), and integrating TEK into the science curriculum is one way to do this.

Aside from NOS benefits of incorporating TEK into STEM education there are lessons and best practices rooted in the knowledge itself: TEK is place-based, intergenerational, hands-on, culturally-relevant and responsive, and directly connects to environmental education, sustainability, epistemological diversity, community engagement, applied learning, environmental literacy, history, storytelling, cross-cultural, cultural and academic identity, and decolonizing education. Traditional ecological knowledge builds our knowledge portfolio with emphasis on holistic systems thinking for social, economic, and environmental sustainability for future generations. To continue advancing our knowledge and holistically address issues we are facing, we should honor and include more ways of thinking; some of your students may already have this knowledge that hasn’t yet been acknowledged.


4110 SE Hawthorne Blvd, PO Box 1025
Portland, Oregon

Powered by Wild Apricot Membership Software